Skip to content

2022年 8月 4日

高中数学优秀教案设计

其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)2、通过下面各组数的值的比较:cos(30°—90°)与cos30°—cos90°sin(30°+60°)和sin30°+sin60°。

接下来是小编为大家整理的高中数学教案大全,希望大家喜欢!**高中数学教案大全一**《充分条件与必要条件》教学准备教学目标运用充分条件、必要条件和充要条件教学重难点运用充分条件、必要条件和充要条件教学过程基础知识(一)充分条件、必要条件和充要条件1.充分条件:如果A成立那么B成立,则条件A是B成立的充分条件。

通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。

对学生,只要求能分清命题若p则q中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。

下面再看一个问题:例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程。

学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3)可以写成,也是指数图象。

若成立则A、B互为充要条件。

设置问题情景引例学校准备建造一个矩形花坛,面积设计为16平方米。

观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。

让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。

使学生初步学会解决最简单、最基本的排列组合问题,并且进一步体验解决问题策略的多样化。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极值及端点值比较即可。

生4:因为他这样做,正好是将y=x3上的点B(x,y)的横坐标x与纵坐标y交换,而y=x3的反函数也正好是将x与y交换。

引导学生充分利用已知图形的性质,最后发现可由定义找出该二面角的平面角。

教学过程(一)创设情景,揭开课题展示庐山的风景图——横看成岭侧看成峰,远近高低各不同,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。

充要条件:如果A既是B成立的充分条件,又是B成立的必要条件,则A是B成立的充要条件;同时B也是A成立的充要条件。

**【教学重点】**等差数列的概念;等差数列的通项公式**【教学难点】**理解等差数列等差的特点及通项公式的含义;等差数列的通项公式的推导过程.**【学情分析】**我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。

设,生产多少单位产品时,边际成本最低?(2)设,产品的单价,怎样的定价可使利润最大?课堂练习。

说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:S1列:列出函数关系式。

到达预定地点后,每艘船要停留15分钟,以便让乘客上下船,然后它们又返航。

即=与图象之间关于轴对称,而此时的图象已经有了,具备了变换的条件。

能力目标:通过设置问题情境培养学生判断、推理的能力,同时渗透数形结合和由特殊到一般的数学思想方法.(3)情感目标:在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神。

我们该怎么去写教案呢?以下是小编收集整理的高中数学教案教学设计(精选11篇),希望对大家有所帮助。

平时能积极参加体育锻炼和有益的文娱活动。

已知,求曲线在处的切线斜率和切线方程。

也就是说,温斯顿将在车站空等半小时,等他的轿车到达后坐车回家,从而他将比以往晚半小时到家。

)、二面角的平面角1、揭示概念产生背景。

交换原命题的条件和结论,并且同时否定)2、四种命题的关系(1).原命题为真,它的逆命题不一定为真.(2).原命题为真,它的否命题不一定为真.(3).原命题为真,它的逆否命题一定为真(七)回扣引入分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:第一句:该来的没来其逆否命题是不该来的来了,甲认为自己是不该来的,所以甲走了。

关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。

穿白色衣服的女子说:我不是恶魔。

高中数学教案1【课题名称】《等差数列》的导入【授课年级】高中二年级【教学重点】理解等差数列的概念,能够运用等差数列的定义判断一个数列是否为等差数列。

如果纸再薄一些,比如纸厚0.001毫米,对折34次就超过珠穆朗玛峰的高度了.还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧(对数算也行。

要多讲究学习方法,不能靠熬夜来完成学习任务,提高学习效率,老师相信你一定能通过自己的努力取得更好的成绩!5\\.虽然你个头小,但每次你领读时的那股认真劲儿,令老师暗暗称赞。

**教学重点及难点**重点:平面向量知识在各个领域中应用。

课后作业:思考如何用三角函数单调性比较三角函数值的大小。

求二面角的平面角的方法是:先找(或作)——后证——再解(三角形)(五)、练习、小结与作业练习:习题9.7的第3题小结在复习完二面角及其平面角的概念后,要求学生对空间中三种角加以比较、归纳,以促成学生建立起空间中角这一概念系统。

让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.(4)当堂训练,巩固深化。

一共生了几只小猫呀?猜猜看,要是猜中了,就把剩下的这只小猫给你。

通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

那要怎么写好教案呢?以下是小编精心整理的高中数学教案,仅供参考,大家一起来看看吧。

初步掌握求曲线方程的方法。

让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.3.预期效果本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.**教学流程设计**(一)创设情景1.复习锐角300,450,600的三角函数值;2.复习任意角的三角函数定义;3.问题:由,你能否知道sin2100的值吗?引如新课.设计意图高中数学优秀教案高中数学教学设计与教学反思自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.(二)新知探究1\\.让学生发现300角的终边与2100角的终边之间有什么关系;2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;3.Sin2100与sin300之间有什么关系.设计意图由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫.(三)问题一般化探究一1.探究发现任意角的终边与的终边关于原点对称;2.探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;3.探究发现任意角与的三角函数值的关系.设计意图首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进(四)练习利用诱导公式(二),口答下列三角函数值.(1).;(2).;(3)..喜悦之后让我们重新启航,接受新的挑战,引入新的问题.(五)问题变形由sin3000=-sin600出发,用三角的定义引导学生求出sin(-3000),Sin1500值,让学生联想若已知sin3000=-sin600,能否求出sin(-3000),Sin1500)的值.学生自主探究,掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.一起看看高一数学优秀教案!欢迎查阅!**高一数学优秀教案1**教学目标掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.教学重难点掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.教学过程等比数列性质请同学们类比得出.【方法规律】1、通项公式与前n项和公式联系着五个基本量,知三求二是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法.2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决.【示范举例】例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为.(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数.例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.**高一数学优秀教案2**教学准备教学目标知识目标等差数列定义等差数列通项公式能力目标掌握等差数列定义等差数列通项公式情感目标培养学生的观察、推理、归纳能力教学重难点教学重点等差数列的概念的理解与掌握等差数列通项公式推导及应用教学难点等差数列等差的理解、把握和应用教学过程由__《红高粱》主题曲酒神曲引入等差数列定义问题:多媒体演示,观察—-发现?等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

解排列组合应用题时主要应抓住是排列问题还是组合问题,其次要搞清需要分类,还是需要分步.切记:排组分清(有序排列、无序组合),加乘明确(分类为加、分步为乘).教法设计1.对于基础较好的学生,建议把排列与组合的概念进行对比的进行学习,这样有利于搞请这两组概念的区别与联系.2.学生与老师可以合编一些排列组合问题,如45人中选出5人当班干部有多少种选法?与45人中选出5人分别担任班长、副班长、体委、学委、生委有多少种选法?这是两个相近问题,同学们会根据自己身边的实际可以编出各种各样的具有特色的问题,教师要引导学生辨认哪个是排列问题,哪个是组合问题.这样既调动了学生学习的积极性,又在编题辨题中澄清了概念.为了理解排列与组合的概念,建议大家学会画排列与组合的树图.如,从a,b,c,d4个元素中取出3个元素的排列树图与组合树图分别为:排列树图由排列树图得到,从a,b,c,d取出3个元素的所有排列有24个,它们分别是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.组合树图由组合树图可得,从a,b,c,d中取出3个元素的组合有4个,它们是(abc),(abd),(acd),(bcd).从以上两组树图清楚的告诉我们,排列树图是对称的,组合图式不是对称的,之所以排列树图具有对称性,是因为对于a,b,c,d四个字母哪一个都有在第一位的机会,哪一个都有在第二位的机会,哪一个都有在第三位的机会,而组合只考虑字母不考虑顺序,为实现无顺序的要求,我们可以限定a,b,c,d的顺序是从前至后,固定了死顺序等于无顺序,这样组合就有了自己的树图.学会画组合树图,不仅有利于理解排列与组合的概念,还有助于推导组合数的计算公式.3.排列组合的应用问题,教师应从简单问题问题入手,逐步到有一个附加条件的单纯排列问题或组合问题,最后在设及排列与组合的综合问题.对于每一道题目,教师必须先让学生独立思考,在进行全班讨论,对于学生的每一种解法,教师要先让学生判断正误,在给予点播.对于排列、组合应用问题的解决我们提倡一题多解,这样有利于培养学生的分析问题解决问题的能力,在学生的多种解法基础上教师要引导学生选择方案,总结解题规律.对于学生解题中的常见错误,教师一定要讲明道理,认真分析错误原因,使学生在是非的判断得以提高.4.两个性质定理教学时,对定理1,可以用下例来说明:从4个不同的元素a,b,c,d里每次取出3个元素的组合及每次取出1个元素的组合分别是这就说明从4个不同的元素里每次取出3个元素的组合与从4个元素里每次取出1个元素的组合是—一对应的.对定理2,可启发学生从下面问题的讨论得出.从n个不同元素,,…,里每次取出m个不同的元素(),问:(1)可以组成多少个组合;(2)在这些组合里,有多少个是不含有的;(3)在这些组合里,有多少个是含有的;(4)从上面的结果,可以得出一个怎样的公式.在此基础上引出定理2.对于,和一样,是一种规定.而学生常常误以为是推算出来的,因此,教学时要讲清楚.教学设计示例教学目标(1)使学生正确理解组合的意义,正确区分排列、组合问题;(2)使学生掌握组合数的计算公式;(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;教学重点难点重点是组合的定义、组合数及组合数的公式;难点是解组合的应用题.教学过程设计(-)导入新课(教师活动)提出下列思考问题,打出字幕.字幕一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?(学生活动)讨论并回答.答案提示:(1)排列;(2)组合.评述问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.(二)新课讲授提出问题创设情境(教师活动)指导学生带着问题阅读课文.字幕1.排列的定义是什么?2.举例说明一个组合是什么?3.一个组合与一个排列有何区别?(学生活动)阅读回答.(教师活动)对照课文,逐一评析.设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.【归纳概括建立新知】(教师活动)承接上述问题的回答,展示下面知识.字幕模型:从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.组合数:从个不同元素中取出个元素的所有组合的个数,称之,用符号表示,如从6个元素中取出2个元素的组合数为.评述区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.(学生活动)倾听、思索、记录.(教师活动)提出思考问题.投影与的关系如何?(师生活动)共同探讨.求从个不同元素中取出个元素的排列数,可分为以下两步:第1步,先求出从这个不同元素中取出个元素的组合数为;第2步,求每一个组合中个元素的全排列数为.根据分步计数原理,得到字幕公式1:公式2:(学生活动)验算,即一条铁路上6个火车站有15种不同的票价的普通客车票.设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.【例题示范探求方法】(教师活动)打出字幕,给出示范,指导训练.字幕例1列举从4个元素中任取2个元素的所有组合.例2计算:(1);(2).(学生活动)板演、示范.(教师活动)讲评并指出用两种方法计算例2的第2小题.字幕例3已知,求的所有值.(学生活动)思考分析.解首先,根据组合的定义,有其次,由原不等式转化为即解得综合、,得,即点评这是组合数公式的应用,关键是公式的选择.设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.【反馈练习学会应用】(教师活动)给出练习,学生解答,教师点评.课堂练习课本P99练习第2,5,6题.补充练习字幕1.计算:2.已知,求.(学生活动)板演、解答.设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.【点评矫正交流提高】(教师活动)依照学生的板演,给予指正并总结.补充练习答案:1.解:原式:2.解:由题设得整理化简得,解之,得或(因,舍去),所以,所求字幕小结:1.前一个公式主要用于计算具体的组合数,而后一个公式则主要用于对含有字母的式子进行化简和论证.2.在解含组合数的方程或不等式时,一定要注意组合数的上、下标的限制条件.(学生活动)交流讨论,总结记录.设计意图:由实践——认识——一实践的认识论,教学时抓住学习—一练习——反馈———小结这些环节,使教学目标得以强化和落实.(三)小结(师生活动)共同小结.本节主要内容有1.组合概念.2.组合数计算的两个公式.(四)布置作业1.课本作业:习题103第1(1)、(4),3题.2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?3.研究性题:在的边上除顶点外有5个点,在边上有4个点,由这些点(包括)能组成多少个四边形?能组成多少个三角形?(五)课后点评在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.作业参考答案2.解;设有男同学人,则有女同学人,依题意有,由此解得或或2.即男同学有5人或6人,女同学相应为3人或2人.3.能组成(注意不能用点为顶点)个四边形,个三角形.探究活动同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?解设四人分别为甲、乙、丙、丁,可从多种角度来解.解法一可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:甲拿乙制作的贺卡时,则贺卡有3种分配方法.甲拿丙制作的贺卡时,则贺卡有3种分配方法.甲拿丁制作的贺卡时,则贺卡有3种分配方法.由加法原理得,贺卡分配方法有3+3+3=9种.解法二可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有(种).逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为1.故符合题设要求的取法共有(种).说明(1)对一类元素不太多而利用排列或组合计算公式计算比较复杂,且容易重复遗漏计算的排列组合问题,常可采用直接分类后用加法原理进行计算,如本例采用解法一的做法.(2)设集合,如果S中元素的一个排列满足**高中数学教案大全2**一教材分析本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。

因此本节课我以建构主义的创设问题情境——提出数学问题——尝试解决问题——验证解决方法为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。

例5、(1)求的周期。

希望能从根本上认识到自己的不足,在课堂上能认真听讲,开动脑筋,遇到问题敢于请教。

这样的话只动用了30美元。

重点、难点:重点:二面角和二面角的平面角的概念难点:二面角的平面角概念的形成过程**教法分析**1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

情感目标——创设问题情景,激发同学观看、分析、探求的学习激情、强化同学参加意识及主体作用。

所以当?t?0时,极限就是物体在时刻的瞬时速度。

有一次,司机比以往迟了半个小时出发。

Read more from 日语培训

Share your thoughts, post a comment.

(required)
(required)

Note: HTML is allowed. Your email address will never be published.

Subscribe to comments